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Abstract

In this paper, a mesh-free formulation for the static and free vibration analyses of composite plates is presented via a linearly con-
forming radial point interpolation method. The radial and polynomial basis functions are employed to construct the shape functions
bearing Delta function property. A strain smoothing stabilization technique for nodal integration is employed to restore the conform-
ability and to improve the accuracy and the rate of convergence. The present formulation is based on the first order shear deformation
plate theory, with effective treatment for shear-locking and hence is applicable for both thin and relatively thick plates. To verify the
accuracy and stability of the present formulation, intensive comparisons are made with existing results available in the literature and
good agreements are obtained. The numerical examples have confirmed the significant features of the present method: (1) very stable
and accurate for extremely distributed nodes; (2) shear-locking can be avoid very easily in the present formulation; (3) applicable for
problems of complex domains.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The static and vibration analyses of plates have been
studied extensively by researchers using various numerical
methods. The development of numerical approaches has
led the invention of some important methods, including
Ritz method, finite difference method (FDM), finite ele-
ment method (FEM), etc. Although these methods have
demonstrated efficiency and accuracy in solving plate
problems, there are still some limitations in engineering
applications. In Ritz method, it is difficult to choose the
appropriate trial functions for complicated problems; the
FDM is more flexible than the Ritz method, but requires
a set of ‘‘structured’’ grids, which limits its application
0266-3538/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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for problems of complex geometry. The FEM is so far
the most flexible and effective for complicated geometry,
but there are problems related to meshing and mesh distor-
tion. A promising numerical technique, mesh-free method,
developed in recent years (see, e.g., [1,2]), has shown some
superiorities over traditional numerical methods.

Since the first weak form mesh-free method, the diffuse
element method (DEM), was proposed by Nayroles et al.
[3], various mesh-free methods have been developed. Such
as element-free Galerkin (EFG) method [4], smooth parti-
cle hydrodynamic (SPH) method [5,6], reproducing kernel
particle method (RKPM) [7], Petrov–Galerkin mesh-free
[8], corrective smoothed particle method (CSPM) [9], mod-
ified smoothed-particle hydrodynamics (MSPH) [10] and
point interpolation methods (PIM) [11–13]. In the weak
form mesh-free methods, a background mesh or a back-
ground cell structure is commonly used to compute the
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integrals. Recently, the nodal integration techniques have
been developed by performing the integrals based on
nodes. Beissel and Belytschko [14] demonstrated that the
nodal integration of EFG resulted in a spatial instability
due to the under integration of the weak form. They pro-
posed a stabilized procedure to eliminate the spatial insta-
bility. Bonet and Kulasegaram [15] presented a least-square
stabilization technique to eliminate spurious mode in nodal
integration. A stabilized conforming nodal integration
approach for Galerkin mesh-free methods has been pro-
posed by Chen et al. [16] to eradicate spatial instability in
nodal integration. An integration constraint (IC) was intro-
duced as a necessary condition for a linear exactness in
mesh-free Galerkin approximation. It has been revealed
that the Gauss integration violates the integration con-
straint (IC) and leads to noticeable error for linear solu-
tions. A strain smoothing stabilization procedure was
proposed to compute the nodal strain by applying a diver-
gence theorem. A mesh-free Mindlin–Reissner plate formu-
lation was provided by Wang and Chen [17] using the
stabilized conforming nodal integration to remove the
shear-locking phenomena.

For the analysis of laminated plates, some analytical
solutions have been reported by Srinivas and Rao [18],
Srinivas et al. [19], Pagano [20] and Vel and Batra [21].
For some complicated cases where analytical solutions
are difficult to obtain, however, numerical methods are
usually adopted to attain the approximation results, such
as meshless local Petrov–Galerkin method (MLPG) by
Qian et al. [22] and collocation method by Firreira et al.
[23]. Radial basis functions (RBFs), which are widely used
in the mathematics community for function fitting and
solving PDEs using global nodes and collocation proce-
dures [24,25], have been employed for the construction
of shape functions in numerical methods. Some applica-
tions of RBFs in composite plates analysis have been pre-
sented by Ferreira and co-workers [26–29], and Xiao et al.
[30].

The radial point interpolation meshless method
(RPIM) [12,31] has been demonstrated to be an efficient
meshless method and successfully applied in many engi-
neering problems [32–36]. Both radial basis and polyno-
mial functions are employed to construct the shape
functions. The interpolation approximation passes
through all scattered nodes in an influence domain, hence,
the shape functions possess the delta function properties,
which make the essential boundary conditions be imposed
directly. Moreover, the moment matrix can be always
inverted due to the employment of radial basis function.
In this paper, a formulation for static and free vibration
analyses of composite plates is provided using radial point
interpolation meshless method (RPIM), where a stabilized
conforming nodal integration instead of Gauss integration
is adopted to evaluate the stiffness matrix. The present
solution is based on the first order shear deformation plate
theory that is a general form of the Mindlin–Reissner
plate theory and Galerkin weak form formulation. To val-
idate the accuracy and stability of the present method, an
intensive study has been carried out for different node dis-
tributions, and comparisons were made with results avail-
able in literature. The static deflections and free vibration
of plates with different shapes and boundary conditions
are also examined.
2. Shape function construction

Consider an approximation function u(x) in a domain
X, which has a set of arbitrarily distributed points xi,
(i = 1,2, . . . ,NP), NP is the total number of nodes in the
domain. It is assumed that, for a certain point xk, only
the nodes in a local sub-domain around xk, for example,
n nodes altogether, determine the value of u(xk). The effect
of the nodes outside the sub-domain is neglected. This sun-
domain is called influence domain or support domain. The
radius of the influence domain is expressed by the product
of a scaling factor and the maximum distance among
neighboring nodes in the influence domain [27]. Therefore,
the approximation of function u(x) can be expressed as

uðxÞ ¼
Xn

i¼1

riðxÞai þ
Xm

j¼1

pjðxÞbj ¼ rTðxÞaþ pTðxÞb ð1Þ

where ai is the coefficient for the radial basis function ri (x)
and bj the coefficient for polynomial basis pj(x), m is deter-
mined according to the polynomial basis selected. For
example, a quadratic basis requires m = 6. The radial basis
function ri(x) for two dimensional problems are defined as

riðx; yÞ ¼ ½ðx� xiÞ2 þ ðy � yiÞ
2 þ R2

c �
q ð2Þ

where q and Rc are two shape parameters, which are real
and had been examined in detail by Wang and Liu [27].
A quadratic polynomial basis function pj(x) is given by

pTðxÞ ¼ ½1; x; y; x2; xy; y2� ð3Þ
The coefficients ai and bj in Eq. (1) are determined by sat-
isfying the reproducing condition over the influence do-
main. The interpolation at the kth node is expressed as

uk ¼ uðxkÞ ¼
Xn

i¼1

airiðxkÞ þ
Xm

j¼1

bjpjðxkÞ ð4Þ

In order to solve coefficients ai and bj, the following con-
straints are imposedXn

i¼1

pjðxkÞai ¼ 0; j ¼ 1; 2; . . . ;m ð5Þ

Eqs. (4) and (5) can be expressed in matrix form as

r0 p0

pT
0 0

� �
a

b

� �
¼

ue

0

� �
or G

a

b

� �
¼

ue

0

� �
ð6Þ

where nodal displacement vector ue is given by

ue ¼ ½u1; u2; u3; . . . ; un�T ð7Þ
The coefficient matrix r0 is expressed as
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Fig. 1. Geometry of a representative node domain and its Voronoi
domain.
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r0 ¼

r1ðx1; y1Þ r2ðx1; y1Þ � � � rnðx1; y1Þ
r1ðx2; y2Þ r2ðx2; y2Þ � � � rnðx2; y2Þ

..

. ..
. ..

. ..
.

r1ðxn; ynÞ r2ðxn; ynÞ � � � rnðxn; ynÞ

266664
377775 ð8Þ

The coefficient matrix p0 is defined as

p0 ¼

p1ðx1; y1Þ p2ðx1; y1Þ � � � pmðx1; y1Þ
p1ðx2; y2Þ p2ðx2; y2Þ � � � pmðx2; y2Þ

..

. ..
. ..

. ..
.

p1ðxn; ynÞ p2ðxn; ynÞ � � � pmðxn; ynÞ

266664
377775 ð9Þ

Eq. (6) can be solved for coefficients ai and bj

a

b

� �
¼ G�1 ue

0

� �
ð10Þ

The approximation of function u(x) is finally expressed as

uðxÞ ¼ rTðxÞ pTðxÞ
� �

G�1 ue

0

� �
¼ uðxÞue ð11Þ

where u(x) is the matrix of the shape functions and given
by

uðxÞ ¼ ½/1ðxÞ;/2ðxÞ; . . . ;/nðxÞ� ð12Þ
The present shape functions possess the reproducing prop-
erty due to the addition of polynomial basis, also satisfy
the Delta function properties and partition of unity, and al-
ways exist because of the adoption of RBFs (see, e.g., [1]).

3. Strain smoothing technique

For linear exactness in Galerkin approximation, it has
been demonstrated by Chen et al. [16] that the employment
of linearly consistent shape functions does not guarantee a
linear exactness in the solution, integration constraints (IC)
need to be satisfied in domain integration. A detailed investi-
gation on integration constraints has been carried out by
Chen et al. [16]. They proposed a strain smoothing method
in order to remove the instability in nodal integration. The
strain smoothing technique is incorporated in present RPIM
method for plate analysis, and briefly described as below:

For a two dimensional domain X, the strain smoothing
at a node is given by

~eijðxLÞ ¼
1

AL

Z
X

eijðxÞdX ð13Þ

where AL ¼
R

XL
dX is the area of the representative domain

of node L, as shown in Fig. 1, which can be obtained either
from the Voronoi diagram or Delaunay triangulation. By
employing the divergence theorem to Eq. (13), the follow-
ing strain smoothing expression is obtained

~eijðxLÞ ¼
1

2AL

Z
CL

ðuinj þ ujniÞdC ð14Þ

where CL is the boundary of the representative domain of
node L, n is the surface normal on CL, as shown in
Fig. 1. Introducing RPIM shape functions into Eq. (14)
yields

~ehðxLÞ ¼
X
I2SL

eBIðxLÞuI ð15Þ

eBIðxLÞ ¼
~r1/IðxLÞ 0

0 ~r2/IðxLÞ
~r2/IðxLÞ ~r1/IðxLÞ

264
375 ð16Þ

~ri/IðxLÞ ¼
1

AL

Z
CL

/IðxLÞniðxLÞdC ð17Þ

where SL is a group of nodes in the corresponding shape
function supports for node L. To ensure the accuracy
and convergence in applying the smoothed strain for stabil-
ization in the nodal integration, the integration constraints
require being satisfied. It has been demonstrated that the
smoothing gradient equation (17) satisfies the integration
constraints when reproducing kernel shape functions are
introduced [16]. Due to the reproducing properties of
RPIM shape functions, it is concluded that the integration
constraints still hold when the present RPIM shape func-
tions are employed.

4. Formulation

4.1. Energy functional for plates

Consider a plate with thickness h, as shown in Fig. 2,
where a coordinate system (x,y,z) is fixed on the middle
plane of the plate. According to the first order shear defor-
mation theory, the displacement field is expressed as

uðx; y; zÞ ¼ u0ðx; yÞ � zhxðx; yÞ
vðx; y; zÞ ¼ v0ðx; yÞ � zhyðx; yÞ
wðx; y; zÞ ¼ w0ðx; yÞ

ð18Þ

where u0, v0 and w0 denote the displacements of the mid-
plane of the plate in the x, y, and z directions, hx and hy
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Fig. 2. Coordinate system of a plate.
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represent the rotations of the transverse normal about the y

and x axes, respectively (see Fig. 3).
The linear strains are given by

exx

eyy

cxy

8><>:
9>=>; ¼

ou0

ox
ov0

oy

ou0

oy þ
ov0

ox

8>><>>:
9>>=>>;� z

ohx
ox
ohy

oy

ohx
oy þ

ohy

ox

8>><>>:
9>>=>>; ¼ e0f g � z jf g

cyz

cxz

� �
¼

hy � ow0

oy

hx � ow0

ox

( )
¼ c0f g ð19Þ

The strain energy of the plate is expressed by

U e ¼
1

2

Z
X

eTSedX ð20Þ

where e and S are given by

e ¼
e0

j

c0

8><>:
9>=>; ð21Þ

S ¼

A11 A12 A16 B11 B12 B16 0 0

A12 A22 A26 B12 B22 B26 0 0

A16 A26 A66 B16 B26 B66 0 0

B11 B12 B16 D11 D12 D16 0 0

B12 B22 B26 D12 D22 D26 0 0

B16 B26 B66 D16 D26 D66 0 0

0 0 0 0 0 0 S44 S45

0 0 0 0 0 0 S45 S55

266666666666664

377777777777775
¼

A B 0

B D 0

0 0 S

264
375 ¼ D 0

0 S

" #
ð22Þ

In which the extensional (Aij), coupling (Bij), bending (Dij)
and transverse shear Sij stiffnesses, are defined as
h1 h2

h k+ 1

hk k

1

2

h/2

Fig. 3. Cross-sectional view of the laminated plate.
ðAij;Bij;DijÞ ¼
Z h=2

�h=2

Qijð1; z; z2Þdz; Sij ¼ K
Z h=2

�h=2

Qij dz

ð23Þ
where Aij, Bij and Dij are defined for i,j = 1,2,6, whereas Sij

is defined for i,j = 4,5. K denotes the transverse shear cor-
rection coefficient.

For a plate composed of different layers of orthotropic
materials, the stiffnesses can be defined as

Aij ¼
XNl

k¼1

Qk
ijðhk � hkþ1Þ; Bij ¼

1

2

XNl

k¼1

Qk
ijðh

2
k � h2

kþ1Þ

Dij ¼
1

3

XNl

k¼1

Qk
ijðh3

k � h3
kþ1Þ; Sij ¼

5

6

XNl

k¼1

Qk
ijðhk � hk�1Þ

ð24Þ

where hk and hk+1 denote the distances from the plate ref-
erence mid-plane to the outer and inner surfaces of the kth
layer, respectively, as shown in Fig. 3. Nl is the total num-
ber of layers in the laminated plate and Qk

ij is the trans-
formed reduced stiffness matrix for the kth layer and
defined as

Q ¼ T�1QT�T ð25Þ
where T is the transformation matrix between the principle
material coordinates and the plate’s coordinates, and Q is
the reduced stiffness matrix. Both T and Q can refer to
the work by Reddy [37].

The external work done due to surface traction and
body force is given by

W e ¼
Z

X
uT�f dXþ

Z
C

uT�tdC ð26Þ

where �f and �t represent the external load and prescribed
traction on the natural boundary, respectively.

For static analysis of plates, the total potential energy
functional is expressed as

Ps ¼ U e � W e ð27Þ

For free vibration analysis of plates, the kinetic energy of
the plates is given by

H ¼ 1

2

Z
X

qhð _u2 þ _v2 þ _w2ÞdX ð28Þ

the total energy functional is thus given by

Pv ¼ U e �H ð29Þ
4.2. Nodal distribution and integration

4.2.1. Static analysis

The approximations of displacements and rotations of
the mid-plane of the plate are expressed using RPIM shape
functions as
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uh
0 ¼

uh
0

vh
0

wh
0

hh
x

hh
y

0BBBBBB@

1CCCCCCA ¼
XNP

I¼1

/IðxÞ

uI

vI

wI

hxI

hyI

0BBBBBB@

1CCCCCCA ¼
XNP

I¼1

/IðxÞdI ð30Þ

Substituting Eq. (30) into Eq. (27) and taking variation to
the energy functional yield the equilibrium equation

Kd ¼ f ð31Þ
where

K ¼ Kb þ Ks ð32Þ
dT ¼ ½dT

1 dT
2 ; . . . ; dT

n � ð33Þ

Kb
IJ ¼

Z
X

BbT

I DBb
J dX ð34Þ

Ks
IJ ¼

Z
X

BsT

I SBs
J dX ð35Þ

fI ¼
Z

X
/I

�f dXþ
Z

C
/I

�tdC ð36Þ

By applying the strain smoothing technique introduced in
Section 3, the integrals of Eqs. (34)–(36) are approximated
by performing nodal integration as follows:

Kb
IJ ¼

XNP

L¼1

eBbT

I ðxLÞDeBb
J ðxLÞAL ð37Þ

Ks
IJ ¼

XNP

L¼1

BsT

I ðxLÞSBs
J ðxLÞAL ð38Þ

fI ¼
XNP

L¼1

/IðxLÞfðxLÞAL þ
XNPb

L¼1

/IðxLÞ�tðxLÞsL ð39Þ

where xL and AL are nodal point coordinate and the nodal
representative area, respectively, NPb is the number of
nodes on the natural boundary, and sL is the weight asso-
ciated with the boundary point obtained from Voronoi dia-
gram or Delaunay triangulation. eBb

I ðxLÞ and Bs
IðxLÞ are

given by

eBb
I ðxLÞ ¼

~bIxðxLÞ 0 0 0 0

0 ~bIyðxLÞ 0 0 0
~bIyðxLÞ ~bIxðxLÞ 0 0 0

0 0 0 ~bIxðxLÞ 0

0 0 0 0 ~bIyðxLÞ
0 0 0 ~bIyðxLÞ ~bIxðxLÞ

2666666664

3777777775
ð40Þ

~bIxðxLÞ ¼
1

AL

Z
CL

/IðxÞnxðxÞdC ð41Þ

~bIyðxLÞ ¼
1

AL

Z
CL

/IðxÞnyðxÞdC ð42Þ

Bs
IðxLÞ ¼

0 0 o/IðxLÞ
ox �/IðxLÞ 0

0 0 o/IðxLÞ
oy 0 �/IðxLÞ

" #
ð43aÞ

or Bs
IðxLÞ ¼

0 0 ~bIxðxLÞ �/IðxLÞ 0

0 0 ~bIyðxLÞ 0 �/IðxLÞ

� �
ð43bÞ
If the strain smoothing technique is applied only to matrix
Bb

I , which takes the form in Eq. (40), and matrix Bs
I takes

the form in Eq. (43a), the smoothing scheme is defined as
curvature smoothing (CS). If Bb

I and Bs
I are expressed as

in Eqs. (40) and (43b), the smoothing scheme is called cur-
vature and shear strain smoothing (CSS). Therefore, there
are two ways in evaluating Bs

IðxLÞ. Eqs. (41) and (42) can be
evaluated using Trapezoidal rule or Gauss quadrature on
the boundaries of representative nodal domain.

4.2.2. Free vibration analysis

For vibration analysis, the approximations of displace-
ments and rotations of the mid-plane of the plate are
expressed by RPIM shape functions as

uh
0 ¼

XNP

I¼1

/IðxÞdIe
ixt ð44Þ

Substituting Eq. (44) into Eq. (29) and taking variation to
the energy functional yield the eigen equation

ðK� x2MÞd ¼ 0 ð45Þ
where K and d have the same expressions as those given in
Eqs. (32) and (33), and mass matrix M is given by

MIJ ¼
Z

X
GT

I mGJ dX ð46Þ

The matrix M is evaluated using nodal integration as

MIJ ¼
XNP

L¼1

GT
I ðxLÞmGJ ðxLÞAL ð47Þ

where

GIðxLÞ ¼

/IðxLÞ 0 0 0 0

0 /IðxLÞ 0 0 0

0 0 /IðxLÞ 0 0

0 0 0 /IðxLÞ 0

0 0 0 0 /IðxLÞ

26666664

37777775 ð48Þ

m ¼

qh 0 0 0 0

0 qh 0 0 0

0 0 qh 0 0

0 0 0 1
12

qh3 0

0 0 0 0 1
12

qh3

26666664

37777775 ð49Þ

The frequencies and corresponding mode shapes can be ob-
tained by solving the eigenvalue equation.

5. Numerical examples

In this section, examples for plate bending and vibration
analyses are presented. The displacement shape functions
are constructed using radial point interpolation method.
The shape parameters q and Rc are taken as 1.03 and
1.42, respectively. The scaling factor of influence domain
of 3.0 is selected. The nodal integration domain is obtained
by connecting the centroid and mid-point of edges of each
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Fig. 5. Convergence comparison for plates with different boundary
conditions.
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triangle, which created by Delaunay triangulation. Trape-
zoidal rule with two-point on each segment for integration
is adopted. Curvature strain smoothing (CS) model is
adopted in all examples, except for shear-locking test case.
The material properties, unless specified otherwise, are
taken as Young’s modulus E = 1.0 · 109N/m2, Poisson
ratio m = 0.3.

5.1. Plate bending

5.1.1. Square plates

A square plate subjected to transverse uniform load is
first analyzed, the geometry properties of the plate are
given as: length a = 10 and thickness h = 1. The nodal rep-
resentative domain for nodal integration is obtained from
Delaunay triangulation. A nodal representative domain
with regular node distribution is given in Fig. 4. Conver-
gence studies are performed based on the influence of the
number of nodes for plates with simply supported and
clamped boundary conditions. The present solutions are
normalized with those given by Zienkiewicz and Taylor
[38], where the central deflections of the plate are
0.004280 and 0.001580 for simply-supported and clamped
plates, respectively. A comparison of convergence charac-
teristics for plates with different edge constraints is shown
in Fig. 5. A monotonically convergent trend is observed
for the simply-supported plate, while an oscillation is
noticed in the curve for clamped plate when fewer nodes
are used. Similar trend, however, is clearly seen as the num-
ber of nodes increases for both cases. It is concluded that
the present method shows good convergence performance
for square plate analysis.

In order to investigate the stability of present
approach, the effects of irregular node distributions are
studied. The irregularly distributed nodes are generated
by manipulating the regular nodes according to the fol-
lowing approach
0 1 2 3 4 5 6 7 8 9 10
-5

-4

-3

-2

-1

0

1

2

3

4

5

Fig. 4. A uniform nodal distribution in a square plate.
xir ¼ xþ Dx � rc � air

yir ¼ y þ Dy � rc � air

ð50Þ

where x and y are the coordinates of regular nodes, Dx and
Dy are initial nodal spacings, rc is a random number be-
tween �1 and 1, air represents the irregularity factor rang-
ing from 0.1 to 0.4. An example of representative nodal
domain for irregular node distribution is shown in Fig. 6.
The number of nodes used in this example is 121. Fig. 7
elucidates the effects of irregularity factor air on the central
deflections of the plate. It is observed that the maximum er-
ror is less than 2% when the irregularity factor air is taken
as high as 0.4. It is concluded that the irregularity of nodal
distribution produced according to Eq. (50) does not influ-
ence the solutions significantly. It is also found that the er-
ror due to the irregularity of nodal distribution can be
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Fig. 6. An irregular nodal distribution in a square plate. air = 0.4.
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Fig. 9. Extremely irregular node distribution in the inside of a square
plate.
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reduced by adding more nodes, which is clearly observed in
Fig. 8.

A further study, the influence of highly irregular node
distribution on solutions, is carried out for square plates
under uniform or point loads. The extremely irregular
nodes are generated randomly. Two nodal distribution
schemes are tested. Fig. 9 shows a plate with regularly dis-
tributed nodes on boundaries and highly irregular nodes
scattered on the inside of the plate. An extremely irregular
node distribution on entire plate is given in Fig. 10. An
error up to 7.8% is found for nodal distribution scheme
shown in Fig. 10. The error, however, can be reduced to
less than 3% when the scheme with regularly distributed
boundary nodes, shown in Fig. 9, is applied. It demon-
strates that the distribution of boundary nodes has signifi-
cant effects on solutions when the nodal distribution is
highly irregular.
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Fig. 8. Effects of the irregularity of the nodal distribution.
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Fig. 10. Highly irregular node distribution in a square plate.
5.1.2. Circular plates

Clamped circular plates subjected to a centre point load
and uniform load are analyzed in this part. Due to the sym-
metry, the problem can either be modeled on entire domain
or on a quarter of plates. A nodal distribution of a full
plate with 401 nodes is shown in Fig. 11. The load is
directly applied on the node located at the center of the
plate. The radius of the plate is R = 10 and the thickness
is h = 0.1. The analytical solutions for deflections are given
by [39]

wðrÞ ¼ q
64D
ðR2� r2Þ2 ðfor uniform loadÞ ð51Þ

wðrÞ ¼ qR2

16pD
1� r

R

� 	2

þ 2
r
R

� 	2

ln
r
R

� �
ðfor point loadÞ ð52Þ

where r is the distance gauged from the plate centre, and
D = Eh3/12(1 � m2) is the bending stiffness. Table 1 shows
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Fig. 12. Shear-locking test for a simply-supported square plate. (CS: -Æ–Æ—;
CSS: —-).
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Fig. 11. Nodal distribution in a circular plate.

Table 1
Non-dimensional central deflections of a clamped circular plate (R = 10,
h = 0.1)

Load Central deflection

Present Analytical [39]

Uniform load 0.0159948 0.015625
Point load 0.019932 0.019932
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the comparison of present normalized central deflections
with analytical solutions. The normalized deflections
�w ¼ wD=qR2 for point load case and �w ¼ wD=q for uniform
loading are tabulated in Table 1. Good agreements are ob-
served from comparisons.

5.1.3. Shear-locking test

Shear-locking in plate is caused by the parasitic shear,
which is generated due to the inability of the formulation
based on the first order deformation theory in reproducing
pure bending mode. In this section, we utilize RPIM shape
functions in the shear deformable plate formulation to
investigate the shear-locking. Two strain smoothing
schemes, curvature smoothing (CS) only and both curva-
ture and shear strain smoothing (CSS), are performed for
square plates with side length a = 10 under uniform load
q. The deflection is normalized as ŵ ¼ wD=qa4. Fig. 12
shows the locking test results for a simply-supported
square plate. Both smoothing schemes give satisfactory
results for relatively thicker plate. As the plate becomes
thinner, however, a significant locking is observed when
CCS scheme is applied, whereas the CS scheme produces
a locking-free solution and agrees with the exact thin plate
solution. The numerical results demonstrate that the shear
strain smoothing produces additional stiffening effects on
structural rigidity and triggers shear-locking for thin plates.
Similar results are also observed from Fig. 13 for a clamped
square plate. In this case, the deflection is normalized as
ŵ ¼ wD=qa2. Therefore, CS model should be used for thin
plate analysis in order to eradicate shear-locking.

5.1.4. Laminated composite plates

In this section, we consider laminates that are simply
supported on two opposite edges and subjected to three dif-
ferent boundary conditions on the other two edges. For
each laminate, a quarter of the plate is modeled, and total
361 nodes are used to obtain convergent solution. The
material properties of the laminates are: E1/E2 = 25,
G12 = G13 = 0.5E2, G23 = 0.2E2, m12 = 0.25. The laminates
are subjected to uniform loading q0 or sinusoidal loading
q(x,y) = q0 cos (px/a) sin (py/b). The normalized maximum



Table 3
Nondimensionalized stresses for laminated square plates under sinusoidal
loading

a/h Variable 0�/90�

SSSS SSCC SSFF

5 Present �rxxð0Þ 7.161 4.012 2.501
�ryyðhÞ 7.161 5.183 11.985
�ryzðh=2Þ 2.726 1.961 3.869

Vel and Batra [21] �rxxð0Þ 7.671 4.630 2.660
�ryyðhÞ 7.894 5.723 12.877
�ryzðh=2Þ 1.211 0.875 1.541

Khdeir and Reddy [40] �rxxð0Þ 7.157 3.911 2.469
�ryyðhÞ 7.157 5.153 11.907
�ryzðh=2Þ 2.729 1.958 3.901

10 Present �rxxð0Þ 7.160 4.462 2.440
�ryyðhÞ 7.160 3.801 11.886
�ryzðh=2Þ 2.724 1.522 3.878

Vel and Batra [21] �rxxð0Þ 7.304 4.653 2.503
�ryyðhÞ 7.309 3.888 12.100
�ryzðh=2Þ 1.219 0.713 1.490

Khdeir and Reddy [40] �rxxð0Þ 7.157 4.450 2.442
�ryyðhÞ 7.157 3.799 11.884
�ryzðh=2Þ 2.729 1.523 3.882

Table 4
Nondimensionalized deflections for an angle-ply square plate (45�/�45�/
45�/�45�) under uniform loading (a/h = 10)

E1/E2 SSSS SSCC SSFF

10 Present 1.1604 0.7728 6.0155
Reddy and Miravete [41] 1.1598 0.7708 6.0487

20 Present 0.7056 0.5198 4.2508
Reddy and Miravete [41] 0.7013 0.5180 4.2843

30 Present 0.5360 0.4192 3.2606
Reddy and Miravete [41] 0.5312 0.4170 3.2417
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deflection is defined as �w ¼ 100wE2h3=a4q0, and the stresses
are normalized as �rxx ¼ 10rxxh

2=a2q, �ryy ¼ 10ryyh2=a2q and
�ryz ¼ 10ryzh=aq. For two-layer cross-ply (0�/90�) and three-
layer cross-ply (0�/90�/90�) square plates under sinusoidal
loading, Table 2 shows the comparison of present results
with solutions given by Khdeir and Reddy [40] and Vel
and Batra [21]. Most differences are less than 1% and the
maximum does not exceed 4%. Table 3 provides the solu-
tions of normalized stresses obtained from RPIM and
those given by Vel and Batra[21] and Khdeir and Reddy
[40]. It is observed that the RPIM solutions are close to
analytical solutions [21] and agree well with results given
by Keheir and Reddy [40] for normal stresses. The trans-
verse stresses, however, are different with the analytical val-
ues, which are more accurate because the transverse
stresses are calculated from equilibrium instead of constitu-
tive relations, which are employed in present study. Table 4
contains the comparison of the present solutions with those
given by Reddy and Miravete [41] for antisymmetric angle-
ply (45�/�45�/45�/�45�) square laminates under uniform
loading. The other material properties are same as those
in Table 4 except the Young’s modules. Very good agree-
ment is observed.

5.2. Free vibration of plates

In the following examples, free vibrations of various
plates are analyzed, and rotary inertia (RI) is taken into
account in present study. The nodal integration domain
is generated using Delaunay triangulation. Solutions are
obtained using two-point Trapezoidal integration rule. A
scaling factor of 3.0 is used throughout this study.

5.2.1. Isotropic plate

A simply-supported isotropic square plate having uni-
formly distributed nodes, shown in Fig. 4, is investigated.
The geometry and material properties of the plate are: den-
sity q = 8000 kg/m2, Young’s modulus E = 2.0 · 1011 N/
m2, Poisson’s ratio m = 0.3, and dimension length to thick-
ness ratio a/h = 10. The nondimensional frequency param-
eter is defined as �x ¼ xa2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q=Eh2

q
. The node number

ranges from 169 to 361. Table 5 shows the comparison of
present solutions with exact solutions of the 3D elastic the-
ory [19] and those given by Reddy [37], frequency parame-
ters for four modes are provided in the table. The solutions
of stresses for mode (3,3) are also compared with exact val-
Table 2
Nondimensionalized displacements for laminated square plates under sinusoid

a/h 0�/90�

SSSS SSCC

5 Present 1.762 1.259
Vel and Batra [21] 1.712 1.217
Khdeir and Reddy [40] 1.758 1.257

10 Present 1.245 0.665
Vel and Batra [21] 1.227 0.648
Khdeir and Reddy [40] 1.237 0.656
ues given by Srinivas et al. [19] in Table 6. From these two
tables, it is found that the present method shows good con-
vergence and gives stable and accurate solutions.

5.2.2. Laminated composite plate

Two simply supported symmetric cross-ply (0�/90�/0�)
square plates are considered, the length to thickness ratios
are a/h = 10 and a/h = 100, respectively. The material
al loading

0�/90�/0�

SSFF SSSS SSCC SSFF

2.789 1.562 1.201 5.249
2.753 1.525 1.18 5.307
2.777 – – –

2.031 0.7531 0.448 4.335
2.026 0.753 0.446 4.453
2.028 – – –



Table 5
Nondimensionalized natural frequencies of a simply supported isotropic

square plate with RI (�x ¼ xa2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q=Eh2

q
, m = 0.3, a/h = 10)

Mode Number of nodes �x

Present Srinivas et al. [19] Reddy [37]

1 169 5.687 5.767 5.769
225 5.681
289 5.722
361 5.728
441 5.728

2 169 13.375 13.753 13.764
225 13.469
289 13.526
361 13.543
441 13.543

3 169 20.154 21.097 21.121
225 20.118
289 20.569
361 20.571
441 20.570

4 169 25.17 25.700 25.734
225 25.147
289 25.018
361 25.349
441 25.350

Table 6
Variations of stresses across the isotropic square plate (m = 0.3, a/h = 10)

z/h rx/rx(h/2) sxy/sxy(h/2)

Present Srinivas [19] Present Srinivas [19]

0.1 0.7602 0.7676 0.7512 0.7561
0.2 0.5521 0.5571 0.5391 0.5420
0.3 0.3605 0.3627 0.3464 0.3496
0.4 0.1756 0.1787 0.1695 0.1713

Table 7
Nondimensionalized natural frequencies of simply supported symmetric

cross-ply (0o/90o/0o) square plates with RI (�x ¼ xa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q=E22h2

q
,

E11 = 25E22, G12 = G13 = 0.5E22, G23 = 0.2E22, m12 = 0.25)

a/h Mode Present Reddy [37]

10 1 11.455 12.163
2 18.333 18.729
3 31.141 30.931

100 1 15.127 15.183
2 22.658 22.817
3 39.644 40.153
4 55.452 56.210
5 59.289 60.211

a

0a

Fig. 14. A square plate with a square hole.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

Fig. 15. A nodal distribution in a square plate with a square hole.
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parameters are q = 1643 kg/m3, E22 = 7.6 · 109 N/m2,
E11 = 25E22, G12 = G13 = 0.5E22, G23 = 0.2E22, and m12 =
0.25. A nodal distribution model having 15 · 15 nodes is
used in the analysis. Both present results and Reddy’s solu-
tions [37] are provided in Table 7 for comparison purpose.
In general, good agreement is observed for all modes.

5.2.3. Square plate with a square hole at the centre

Free vibration of a simply-supported square plate with a
square cutout at the centre, shown in Fig. 14, is analyzed.
The geometry and material parameters are length a = 10,
size ratio a0/a = 0.5, thickness ration h/a = 0.01, density
q = 8000 kg/m2, Young’s modulus E = 2.0 · 1011N/m2,
Poisson’s ratio m = 0.3. A nodal distribution is shown in
Fig. 15. The present results are obtained using total 216
nodes. The solution normalization ~x ¼ ½qhx2a4=
Dð1� v2Þ�1=4 is used. The present results are compared with
solutions given by Huang and Sakiyama [42], Ali and
Atwal [43] in Table 8. It is observed that good agreements
are attained with Huang and Sakiyama [42] for eleven
modes, and with Ali and Atwal [43] for the first five modes.
5.2.4. Square plate with a circular cutout

Consider a square plate with a circular cutout at the cen-
tre shown in Fig. 16, the length of the plate is a = 10, the
ratio of the radius to length is R0/a = 0.1, and the thickness



Table 8
Nondimensionalized natural frequencies of simply supported square plates
with a square hole at the centre ð~x ¼ ½qhx2a4=Dð1� v2Þ�1=4, h/a = 0.01)

Mode Present Huang and Sakiyama [42] Ali and Atwal [43]

1 4.9217 4.839 4.936
2 6.4810 6.435 6.502
3 6.4821 6.440 6.502
4 8.5509 8.492 8.525
5 8.8656 8.875 8.813
6 10.720 10.805 –
7 10.767 10.831 –
8 12.045 12.291
9 13.370 13.534

10 14.180 14.108
11 14.208 14.234
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Fig. 17. A nodal distribution in a square plate with a circular cutout.

Table 9
Nondimensionalized natural frequencies of clamped square plates with a
circular hole at the centre (~x ¼ qhx2a4=Dð1� m2Þ½ �1=4

, h/a = 0.01, r/
a = 0.1)

Mode Present Huang and Sakiyama [42]

1 6.149 6.240
2 8.577 8.457
3 8.634 8.462
4 10.422 10.233
5 11.414 11.719
6 11.838 12.299
7 12.829 13.037
8 12.842 13.041

Table 10
Nondimensionalized fundamental natural frequencies of square plates
with a circular hole at the centre (x̂ ¼ xa2

ffiffiffiffiffiffiffiffiffi
q=D

p
, h/a = 0.01, R0/a = 0.1)
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ratio is h/a = 0.01. The material properties in Section 5.2.3
are used. A nodal distribution model with 225 nodes is
shown in Fig. 17. Table 9 shows the comparison of present
results with solutions by Huang and Sakiyama [42] for a
clamped plate. The fundamental frequencies for a simply-
supported plate and a clamped plate are computed and
compared with solutions by Belvins [44] in Table 10. It is
observed that the fundamental frequency agrees well with
results by both Belvins [44]. The present solutions for the
other frequencies are little higher, but the maximum differ-
ence does not exceed 4%.

5.2.5. Square plate with a complicated cutout

A square plate with a complicated cutout is analyzed in
this section. The thickness of the plate is h = 0.05, the other
dimensions are shown in Fig. 18. The material properties in
Section 5.2.1 are used. Fig. 19 shows a nodal distribution
of the plate. The natural frequencies for simply-supported
and clamped plates are tabulated in Table 11. For compar-
ison purpose, solutions obtained from ANSYS are also
listed. It is observed that good agreements are attained,
especially for fundamental frequency. For modes 7 and 8
of the simply-supported plate, and modes 4, 5 and 6 for
clamped plate, the present solutions are little lower than
a

R0

Fig. 16. A square plate with a circular hole.

Boundary condition Present Blevins [44]

SSSS 19.258 19.300
CCCC 36.060 35.700
results computed using ANSYS, and the maximum differ-
ence is less than 5%.

5.2.6. Laminated composite plate

Laminated composite plates with different angle-ply
schemes are studied in this section. The dimensionless

frequencies, �x ¼ xa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q=E2h2

q
, of angle-ply laminates (b/

� b/b/. . .), under three different boundary conditions and
with different values of b are presented in Table 12. The
material properties are E1/E2 = 40, G12 = G13 = 0.6E2,
G23 = 0.5E2, m12 = 0.25. Total 289 nodes are used to attain
the convergent solution. The solutions by Reddy and
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Fig. 19. A nodal distribution in a square plate with a complicated cutout.

Table 11
Natural frequencies of square plates with a complicated hole (h = 0.05)

Mode SSSS CCCC

Present (Hz) ANSYS (Hz) Present (Hz) ANSYS (Hz)

1 2.9060 2.9058 6.5903 6.6624
2 4.8352 4.9179 11.249 11.593
3 5.4402 5.4895 11.261 11.652
4 8.6481 8.8213 13.990 14.428
5 9.6034 9.6779 14.569 15.003
6 13.492 13.651 17.881 18.353
7 13.936 14.270 19.190 19.831
8 15.862 16.200 21.147 21.769
9 19.251 19.759 24.295 25.182

10 20.396 20.816 25.175 26.105
11 24.993 25.815 31.446 31.779
12 25.649 26.562 32.459 32.539
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Fig. 18. A square plate with a complicated cutout.

Table 12
Dimensionless fundamental frequency �x ¼ xa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q=E2h2

q
for 10-layer

angle-ply square plates (b/ � b/b/ � � � / � b, a/h = 10)

b SSSS SSCC SSFF

30� Present 18.33 19.79 3.85
Reddy and Miravete [41] 18.51 19.81 3.82

45� Present 19.29 21.06 6.58
Reddy and Miravete [41] 19.38 21.25 6.57

60� Present 18.33 21.02 10.12
Reddy and Miravete [41] 18.51 21.21 10.11
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Miravete [41] are also listed in Table 10 for comparison
purpose. It is observed that the present solutions agree well
with those given by Reddy and Miravete [41].
6. Conclusions

A formulation has been presented for static and free
vibration analyses of isotropic and composite plates using
a linearly conforming radial point interpolation method.
The present mesh-free shape functions were constructed
by combining the radial and polynomial basis functions.
A strain smoothing technique was introduced to the gradi-
ent matrix, and the discrete equilibrium equation and eigen
equation were solved by performing nodal integration
instead of Gauss integration. Numerical comparisons were
made to validate the present formulation. The numerical
examples have confirmed the significant features of the
present method: (1) very stable and accurate for extremely
distributed nodes; (2) shear-locking can be avoid very eas-
ily in the present formulation; (3) applicable for problems
of complex domains.
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